3.290 \(\int \frac{x^{3/2}}{a+b x^2} \, dx\)

Optimal. Leaf size=202 \[ \frac{\sqrt [4]{a} \log \left (-\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} \sqrt{x}+\sqrt{a}+\sqrt{b} x\right )}{2 \sqrt{2} b^{5/4}}-\frac{\sqrt [4]{a} \log \left (\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} \sqrt{x}+\sqrt{a}+\sqrt{b} x\right )}{2 \sqrt{2} b^{5/4}}+\frac{\sqrt [4]{a} \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{b} \sqrt{x}}{\sqrt [4]{a}}\right )}{\sqrt{2} b^{5/4}}-\frac{\sqrt [4]{a} \tan ^{-1}\left (\frac{\sqrt{2} \sqrt [4]{b} \sqrt{x}}{\sqrt [4]{a}}+1\right )}{\sqrt{2} b^{5/4}}+\frac{2 \sqrt{x}}{b} \]

[Out]

(2*Sqrt[x])/b + (a^(1/4)*ArcTan[1 - (Sqrt[2]*b^(1/4)*Sqrt[x])/a^(1/4)])/(Sqrt[2]*b^(5/4)) - (a^(1/4)*ArcTan[1
+ (Sqrt[2]*b^(1/4)*Sqrt[x])/a^(1/4)])/(Sqrt[2]*b^(5/4)) + (a^(1/4)*Log[Sqrt[a] - Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[
x] + Sqrt[b]*x])/(2*Sqrt[2]*b^(5/4)) - (a^(1/4)*Log[Sqrt[a] + Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[x] + Sqrt[b]*x])/(2
*Sqrt[2]*b^(5/4))

________________________________________________________________________________________

Rubi [A]  time = 0.162816, antiderivative size = 202, normalized size of antiderivative = 1., number of steps used = 11, number of rules used = 8, integrand size = 15, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.533, Rules used = {321, 329, 211, 1165, 628, 1162, 617, 204} \[ \frac{\sqrt [4]{a} \log \left (-\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} \sqrt{x}+\sqrt{a}+\sqrt{b} x\right )}{2 \sqrt{2} b^{5/4}}-\frac{\sqrt [4]{a} \log \left (\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} \sqrt{x}+\sqrt{a}+\sqrt{b} x\right )}{2 \sqrt{2} b^{5/4}}+\frac{\sqrt [4]{a} \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{b} \sqrt{x}}{\sqrt [4]{a}}\right )}{\sqrt{2} b^{5/4}}-\frac{\sqrt [4]{a} \tan ^{-1}\left (\frac{\sqrt{2} \sqrt [4]{b} \sqrt{x}}{\sqrt [4]{a}}+1\right )}{\sqrt{2} b^{5/4}}+\frac{2 \sqrt{x}}{b} \]

Antiderivative was successfully verified.

[In]

Int[x^(3/2)/(a + b*x^2),x]

[Out]

(2*Sqrt[x])/b + (a^(1/4)*ArcTan[1 - (Sqrt[2]*b^(1/4)*Sqrt[x])/a^(1/4)])/(Sqrt[2]*b^(5/4)) - (a^(1/4)*ArcTan[1
+ (Sqrt[2]*b^(1/4)*Sqrt[x])/a^(1/4)])/(Sqrt[2]*b^(5/4)) + (a^(1/4)*Log[Sqrt[a] - Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[
x] + Sqrt[b]*x])/(2*Sqrt[2]*b^(5/4)) - (a^(1/4)*Log[Sqrt[a] + Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[x] + Sqrt[b]*x])/(2
*Sqrt[2]*b^(5/4))

Rule 321

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c^(n - 1)*(c*x)^(m - n + 1)*(a + b*x^n
)^(p + 1))/(b*(m + n*p + 1)), x] - Dist[(a*c^n*(m - n + 1))/(b*(m + n*p + 1)), Int[(c*x)^(m - n)*(a + b*x^n)^p
, x], x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b,
 c, n, m, p, x]

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 211

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2]], s = Denominator[Rt[a/b, 2]]}, Di
st[1/(2*r), Int[(r - s*x^2)/(a + b*x^4), x], x] + Dist[1/(2*r), Int[(r + s*x^2)/(a + b*x^4), x], x]] /; FreeQ[
{a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] && AtomQ[SplitProduct[SumBaseQ, b
]]))

Rule 1165

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-2*d)/e, 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1162

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(2*d)/e, 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{x^{3/2}}{a+b x^2} \, dx &=\frac{2 \sqrt{x}}{b}-\frac{a \int \frac{1}{\sqrt{x} \left (a+b x^2\right )} \, dx}{b}\\ &=\frac{2 \sqrt{x}}{b}-\frac{(2 a) \operatorname{Subst}\left (\int \frac{1}{a+b x^4} \, dx,x,\sqrt{x}\right )}{b}\\ &=\frac{2 \sqrt{x}}{b}-\frac{\sqrt{a} \operatorname{Subst}\left (\int \frac{\sqrt{a}-\sqrt{b} x^2}{a+b x^4} \, dx,x,\sqrt{x}\right )}{b}-\frac{\sqrt{a} \operatorname{Subst}\left (\int \frac{\sqrt{a}+\sqrt{b} x^2}{a+b x^4} \, dx,x,\sqrt{x}\right )}{b}\\ &=\frac{2 \sqrt{x}}{b}-\frac{\sqrt{a} \operatorname{Subst}\left (\int \frac{1}{\frac{\sqrt{a}}{\sqrt{b}}-\frac{\sqrt{2} \sqrt [4]{a} x}{\sqrt [4]{b}}+x^2} \, dx,x,\sqrt{x}\right )}{2 b^{3/2}}-\frac{\sqrt{a} \operatorname{Subst}\left (\int \frac{1}{\frac{\sqrt{a}}{\sqrt{b}}+\frac{\sqrt{2} \sqrt [4]{a} x}{\sqrt [4]{b}}+x^2} \, dx,x,\sqrt{x}\right )}{2 b^{3/2}}+\frac{\sqrt [4]{a} \operatorname{Subst}\left (\int \frac{\frac{\sqrt{2} \sqrt [4]{a}}{\sqrt [4]{b}}+2 x}{-\frac{\sqrt{a}}{\sqrt{b}}-\frac{\sqrt{2} \sqrt [4]{a} x}{\sqrt [4]{b}}-x^2} \, dx,x,\sqrt{x}\right )}{2 \sqrt{2} b^{5/4}}+\frac{\sqrt [4]{a} \operatorname{Subst}\left (\int \frac{\frac{\sqrt{2} \sqrt [4]{a}}{\sqrt [4]{b}}-2 x}{-\frac{\sqrt{a}}{\sqrt{b}}+\frac{\sqrt{2} \sqrt [4]{a} x}{\sqrt [4]{b}}-x^2} \, dx,x,\sqrt{x}\right )}{2 \sqrt{2} b^{5/4}}\\ &=\frac{2 \sqrt{x}}{b}+\frac{\sqrt [4]{a} \log \left (\sqrt{a}-\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} \sqrt{x}+\sqrt{b} x\right )}{2 \sqrt{2} b^{5/4}}-\frac{\sqrt [4]{a} \log \left (\sqrt{a}+\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} \sqrt{x}+\sqrt{b} x\right )}{2 \sqrt{2} b^{5/4}}-\frac{\sqrt [4]{a} \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1-\frac{\sqrt{2} \sqrt [4]{b} \sqrt{x}}{\sqrt [4]{a}}\right )}{\sqrt{2} b^{5/4}}+\frac{\sqrt [4]{a} \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1+\frac{\sqrt{2} \sqrt [4]{b} \sqrt{x}}{\sqrt [4]{a}}\right )}{\sqrt{2} b^{5/4}}\\ &=\frac{2 \sqrt{x}}{b}+\frac{\sqrt [4]{a} \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{b} \sqrt{x}}{\sqrt [4]{a}}\right )}{\sqrt{2} b^{5/4}}-\frac{\sqrt [4]{a} \tan ^{-1}\left (1+\frac{\sqrt{2} \sqrt [4]{b} \sqrt{x}}{\sqrt [4]{a}}\right )}{\sqrt{2} b^{5/4}}+\frac{\sqrt [4]{a} \log \left (\sqrt{a}-\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} \sqrt{x}+\sqrt{b} x\right )}{2 \sqrt{2} b^{5/4}}-\frac{\sqrt [4]{a} \log \left (\sqrt{a}+\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} \sqrt{x}+\sqrt{b} x\right )}{2 \sqrt{2} b^{5/4}}\\ \end{align*}

Mathematica [A]  time = 0.0387865, size = 189, normalized size = 0.94 \[ \frac{\sqrt{2} \sqrt [4]{a} \log \left (-\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} \sqrt{x}+\sqrt{a}+\sqrt{b} x\right )-\sqrt{2} \sqrt [4]{a} \log \left (\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} \sqrt{x}+\sqrt{a}+\sqrt{b} x\right )+2 \sqrt{2} \sqrt [4]{a} \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{b} \sqrt{x}}{\sqrt [4]{a}}\right )-2 \sqrt{2} \sqrt [4]{a} \tan ^{-1}\left (\frac{\sqrt{2} \sqrt [4]{b} \sqrt{x}}{\sqrt [4]{a}}+1\right )+8 \sqrt [4]{b} \sqrt{x}}{4 b^{5/4}} \]

Antiderivative was successfully verified.

[In]

Integrate[x^(3/2)/(a + b*x^2),x]

[Out]

(8*b^(1/4)*Sqrt[x] + 2*Sqrt[2]*a^(1/4)*ArcTan[1 - (Sqrt[2]*b^(1/4)*Sqrt[x])/a^(1/4)] - 2*Sqrt[2]*a^(1/4)*ArcTa
n[1 + (Sqrt[2]*b^(1/4)*Sqrt[x])/a^(1/4)] + Sqrt[2]*a^(1/4)*Log[Sqrt[a] - Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[x] + Sqr
t[b]*x] - Sqrt[2]*a^(1/4)*Log[Sqrt[a] + Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[x] + Sqrt[b]*x])/(4*b^(5/4))

________________________________________________________________________________________

Maple [A]  time = 0.006, size = 140, normalized size = 0.7 \begin{align*} 2\,{\frac{\sqrt{x}}{b}}-{\frac{\sqrt{2}}{4\,b}\sqrt [4]{{\frac{a}{b}}}\ln \left ({ \left ( x+\sqrt [4]{{\frac{a}{b}}}\sqrt{x}\sqrt{2}+\sqrt{{\frac{a}{b}}} \right ) \left ( x-\sqrt [4]{{\frac{a}{b}}}\sqrt{x}\sqrt{2}+\sqrt{{\frac{a}{b}}} \right ) ^{-1}} \right ) }-{\frac{\sqrt{2}}{2\,b}\sqrt [4]{{\frac{a}{b}}}\arctan \left ({\sqrt{2}\sqrt{x}{\frac{1}{\sqrt [4]{{\frac{a}{b}}}}}}+1 \right ) }-{\frac{\sqrt{2}}{2\,b}\sqrt [4]{{\frac{a}{b}}}\arctan \left ({\sqrt{2}\sqrt{x}{\frac{1}{\sqrt [4]{{\frac{a}{b}}}}}}-1 \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^(3/2)/(b*x^2+a),x)

[Out]

2*x^(1/2)/b-1/4/b*(1/b*a)^(1/4)*2^(1/2)*ln((x+(1/b*a)^(1/4)*x^(1/2)*2^(1/2)+(1/b*a)^(1/2))/(x-(1/b*a)^(1/4)*x^
(1/2)*2^(1/2)+(1/b*a)^(1/2)))-1/2/b*(1/b*a)^(1/4)*2^(1/2)*arctan(2^(1/2)/(1/b*a)^(1/4)*x^(1/2)+1)-1/2/b*(1/b*a
)^(1/4)*2^(1/2)*arctan(2^(1/2)/(1/b*a)^(1/4)*x^(1/2)-1)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(3/2)/(b*x^2+a),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.35279, size = 312, normalized size = 1.54 \begin{align*} -\frac{4 \, b \left (-\frac{a}{b^{5}}\right )^{\frac{1}{4}} \arctan \left (\frac{\sqrt{b^{2} \sqrt{-\frac{a}{b^{5}}} + x} b^{4} \left (-\frac{a}{b^{5}}\right )^{\frac{3}{4}} - b^{4} \sqrt{x} \left (-\frac{a}{b^{5}}\right )^{\frac{3}{4}}}{a}\right ) + b \left (-\frac{a}{b^{5}}\right )^{\frac{1}{4}} \log \left (b \left (-\frac{a}{b^{5}}\right )^{\frac{1}{4}} + \sqrt{x}\right ) - b \left (-\frac{a}{b^{5}}\right )^{\frac{1}{4}} \log \left (-b \left (-\frac{a}{b^{5}}\right )^{\frac{1}{4}} + \sqrt{x}\right ) - 4 \, \sqrt{x}}{2 \, b} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(3/2)/(b*x^2+a),x, algorithm="fricas")

[Out]

-1/2*(4*b*(-a/b^5)^(1/4)*arctan((sqrt(b^2*sqrt(-a/b^5) + x)*b^4*(-a/b^5)^(3/4) - b^4*sqrt(x)*(-a/b^5)^(3/4))/a
) + b*(-a/b^5)^(1/4)*log(b*(-a/b^5)^(1/4) + sqrt(x)) - b*(-a/b^5)^(1/4)*log(-b*(-a/b^5)^(1/4) + sqrt(x)) - 4*s
qrt(x))/b

________________________________________________________________________________________

Sympy [A]  time = 9.4927, size = 177, normalized size = 0.88 \begin{align*} \begin{cases} \tilde{\infty } \sqrt{x} & \text{for}\: a = 0 \wedge b = 0 \\\frac{2 x^{\frac{5}{2}}}{5 a} & \text{for}\: b = 0 \\\frac{2 \sqrt{x}}{b} & \text{for}\: a = 0 \\- \frac{\sqrt [4]{-1} \sqrt [4]{a} \log{\left (\sqrt [4]{-1} \sqrt [4]{a} \sqrt [4]{\frac{1}{b}} + \sqrt{x} \right )}}{2 b^{3} \left (\frac{1}{b}\right )^{\frac{7}{4}}} + \frac{\sqrt [4]{-1} \sqrt [4]{a} \operatorname{atan}{\left (\frac{\left (-1\right )^{\frac{3}{4}} \sqrt{x}}{\sqrt [4]{a} \sqrt [4]{\frac{1}{b}}} \right )}}{b^{3} \left (\frac{1}{b}\right )^{\frac{7}{4}}} + \frac{\sqrt [4]{-1} \sqrt [4]{a} \log{\left (- \sqrt [4]{-1} \sqrt [4]{a} \sqrt [4]{\frac{1}{b}} + \sqrt{x} \right )}}{2 b^{10} \left (\frac{1}{b}\right )^{\frac{35}{4}}} + \frac{2 \sqrt{x}}{b} & \text{otherwise} \end{cases} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**(3/2)/(b*x**2+a),x)

[Out]

Piecewise((zoo*sqrt(x), Eq(a, 0) & Eq(b, 0)), (2*x**(5/2)/(5*a), Eq(b, 0)), (2*sqrt(x)/b, Eq(a, 0)), (-(-1)**(
1/4)*a**(1/4)*log((-1)**(1/4)*a**(1/4)*(1/b)**(1/4) + sqrt(x))/(2*b**3*(1/b)**(7/4)) + (-1)**(1/4)*a**(1/4)*at
an((-1)**(3/4)*sqrt(x)/(a**(1/4)*(1/b)**(1/4)))/(b**3*(1/b)**(7/4)) + (-1)**(1/4)*a**(1/4)*log(-(-1)**(1/4)*a*
*(1/4)*(1/b)**(1/4) + sqrt(x))/(2*b**10*(1/b)**(35/4)) + 2*sqrt(x)/b, True))

________________________________________________________________________________________

Giac [A]  time = 1.86621, size = 240, normalized size = 1.19 \begin{align*} -\frac{\sqrt{2} \left (a b^{3}\right )^{\frac{1}{4}} \arctan \left (\frac{\sqrt{2}{\left (\sqrt{2} \left (\frac{a}{b}\right )^{\frac{1}{4}} + 2 \, \sqrt{x}\right )}}{2 \, \left (\frac{a}{b}\right )^{\frac{1}{4}}}\right )}{2 \, b^{2}} - \frac{\sqrt{2} \left (a b^{3}\right )^{\frac{1}{4}} \arctan \left (-\frac{\sqrt{2}{\left (\sqrt{2} \left (\frac{a}{b}\right )^{\frac{1}{4}} - 2 \, \sqrt{x}\right )}}{2 \, \left (\frac{a}{b}\right )^{\frac{1}{4}}}\right )}{2 \, b^{2}} - \frac{\sqrt{2} \left (a b^{3}\right )^{\frac{1}{4}} \log \left (\sqrt{2} \sqrt{x} \left (\frac{a}{b}\right )^{\frac{1}{4}} + x + \sqrt{\frac{a}{b}}\right )}{4 \, b^{2}} + \frac{\sqrt{2} \left (a b^{3}\right )^{\frac{1}{4}} \log \left (-\sqrt{2} \sqrt{x} \left (\frac{a}{b}\right )^{\frac{1}{4}} + x + \sqrt{\frac{a}{b}}\right )}{4 \, b^{2}} + \frac{2 \, \sqrt{x}}{b} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(3/2)/(b*x^2+a),x, algorithm="giac")

[Out]

-1/2*sqrt(2)*(a*b^3)^(1/4)*arctan(1/2*sqrt(2)*(sqrt(2)*(a/b)^(1/4) + 2*sqrt(x))/(a/b)^(1/4))/b^2 - 1/2*sqrt(2)
*(a*b^3)^(1/4)*arctan(-1/2*sqrt(2)*(sqrt(2)*(a/b)^(1/4) - 2*sqrt(x))/(a/b)^(1/4))/b^2 - 1/4*sqrt(2)*(a*b^3)^(1
/4)*log(sqrt(2)*sqrt(x)*(a/b)^(1/4) + x + sqrt(a/b))/b^2 + 1/4*sqrt(2)*(a*b^3)^(1/4)*log(-sqrt(2)*sqrt(x)*(a/b
)^(1/4) + x + sqrt(a/b))/b^2 + 2*sqrt(x)/b